Algebra I Team Round Eastside Statewide March 2011

Let:

$$A = 1 + 2 + 3 + 4 + \dots + 100$$

$$B = 1 + 3 + 5 + 7 + \dots + 99$$

$$C = 2 + 4 + 6 + \dots + 100$$

Find the value of B + C - A

Question #2

Algebra I Team Round Eastside Statewide March 2011

$$A + 3 = 5$$

$$AB = 10$$

$$B^C = 25$$

Find A + B + C

Algebra I Team Round **Eastside Statewide March 2011**

Josh can do a job in 5 hours and Joe can do the same job in 10 hours. How long will it take Josh and Joe to do 5 jobs, if they are working together? All jobs take the same amount of time, and Josh and Joe work at constant rates.

Give your answer in hours.

Question #4

Algebra I Team Round **Eastside Statewide March 2011**

If
$$f(x) = 3x^2 + 2x - 1$$
 and $g(x) = 3x + 1$,

Let
$$A = f(4)$$

$$B = \sigma(2)$$

$$B = g(2)$$
 $C = g(1)$ $D = f(8)$

$$D = f(8)$$

Find the value of A + B + C + D

Algebra I Team Round Eastside Statewide March 2011

What is the sum of the 5 largest prime numbers less than 100?

Question #6

Algebra I Team Round Eastside Statewide March 2011

A @ B =
$$A - B + B^A$$

E & F = $(E + F)(E - F)$

Find ((2 @ 1) & (3 @ 2)) & ((3 @ 1) & (1 @ 4)).

Algebra I Team Round Eastside Statewide March 2011

Let
$$f(x) = 3x^2 + 2x - 1$$
.

A =the sum of the roots

B =the sum of the squares of the roots

C = the sum of the reciprocals of the roots

D = the product of the roots

Find A + B + C + D

Question # 8 Algebra I Team Round Eastside Statewide March 2011

What is the equation of the perpendicular bisector of the line segment between points (3,4) and (5,1)?

Express your answer in the form ax + by = c, where a, b, and c are all relatively prime integers and a > 0.

Algebra I Team Round Eastside Statewide March 2011

$$x + 3y = 11$$
 and $x + y = 5$ intersect at the point (a, b).

$$x + y = 4$$
 and $3x + y = 10$ intersect at the point (c, d).

$$x - y = -3$$
 and $3x - 2y = -5$ intersect at the point (e, f).

$$x + y = 2$$
 and $x - y = 0$ intersect at the point (g, h) .

Find the value of a + b + c + d + e + f + g + h.

Question #10

Algebra I Team Round Eastside Statewide March 2011

Express the following with only positive exponents:

$$(3x^24y^2)^{-3}(2zy)^4(x^2yz^3)^{-2}$$

Algebra I Team Round Eastside Statewide March 2011

A number is perfect if its proper positive integral factors add up to the number itself. For instance, 496 is the 3rd perfect number.

A = first perfect number

B = second perfect number

Find A + B

Question #12

Algebra I Team Round Eastside Statewide March 2011

Let $f(x) = 3x^2 + 2x - 1$. At what value(s) of x does f(x) = 0?

Algebra I Team Round Eastside Statewide March 2011

10% of 50% of a number is equal to 20. What is the number?

Question #14

Algebra I Team Round Eastside Statewide March 2011

The lines 3x + 4y = 7 and 2x + 5y = 7 intersect at point (a, b).

The lines 4x - y = 7 and 3y - 2x = -1 intersect at point (c, d).

Find the value of abcd.

Question # 15 Algebra I Team Round **Eastside Statewide March 2011**

How many of the following are divisible by 11?